Lecin DU Make It Big!

 $\mathbf{O}\mathbf{O}$

All The Best

For Your Exams

This question paper conta	ains 4 printed pages]	
Roll No.		earndu.in
S. No. of Question Paper :	168	
Unique Paper Code :	42357501	IC
Name of the Paper :	Differential Equations	•
Name of the Course :	B.Sc. (Math Sci.)/B.Sc. (Prog.)	: DSE-2
Semester :	V	

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All the questions are compulsory.

Attempt any two parts from each question.

(a) Solve :

(b)'

1.

 $(2x + \tan y) dx + (x - x^2 \tan y) dy = 0.$ Solve : $6^{1/2}$

$$\frac{dy}{dx} + \frac{y}{2x} = \frac{x}{y^3}, y(1) = 2.$$

(c) Solve :

 $p^2 - 9p + 18 = 0.$

2. (a) Solve the initial value problem : $6\frac{1}{2}$

 $\frac{d^2y}{dx^2} + 4y = 8 \sin 2x, \quad y(0) = 6, \quad y'(0) = 8.$

P.T.O.

61/2

61/2

(b) Find the general solution of the differential equation : 6¹/₂

2

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 4y = 2x \ln x.$$

(c) For the differential equation :

5 6212 19 6

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 0,$$

show that e^x and e^{4x} are solutions on the interval

 $-\infty < x < \infty$. Are these linearly independent ? Justify.

Also find the solution that satisfies the conditions y(0) = 1, y'(0) = 4.

3.

(a) Using the method of variation of parameters, solve the

differential equation :

$$\frac{d^2y}{dx^2} + 4y = \sec^2 2x.$$

(b)

100

Given that $y = e^{2x}$ is a solution of :

$$(2x + 1) \frac{d^2y}{dx^2} - 4(x + 1) \frac{dy}{dx} + 4y = 0,$$

find a linearly independent solution by reducing the order. Write the general solution.

0/2

61/2

6

6

6

6

6

(c) Find the general solution of :

$$x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 10y = 3x^4 + 6x^3,$$

given that $y = x^2$ and $y = x^5$ are linearly independent solutions of the corresponding homogeneous equation.

(a) Solve :

4.

$$\frac{a \, dx}{(b-c)yz} = \frac{b \, dy}{(c-a)zx} = \frac{cdz}{(a-b)xy}$$

Solve : (b)

$$3\frac{dx}{dt} + 2\frac{dy}{dt} - x + y = t - 1,$$
$$\frac{dx}{dt} + \frac{dy}{dt} - x = t + 2.$$

5.

(c) Check condition of integrability and solve :

$$zydx = xzdy + y^2dz.$$

(a) Eliminate the arbitrary function f from the equation : 6

$$f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$$

to form the corresponding partial differential equation.

(b) Find the general integral of the partial differential equation :* 6

$$x(x^2 + 3y^2) p - y (3x^2 + y^2) q = 2z(y^2 - x^2).$$

P.T.O.

😡 learndu.in

6

(c) Show that the equation :

$$xp = yq, z(xp + yq) = 2xy$$

4)

(

are compatible and find their solution.

6. (a) Find the complete integral of the equation : $6\frac{1}{2}$

 $p^2x + q^2y = z.$

(b) Find the complete integral of the equation : $6\frac{1}{2}$

$$pqz = p^2(xq + p^2) + q^2(yp + q^2).$$

(c) Reduce the following differential equation to canonical form : 6¹/₂

$$\frac{d^2z}{dx^2} - x^2 \frac{\partial^2 z}{\partial y^2} = 0.$$

4

Join Us For University Updates

Learn_DU

in Learn DU

