Learn DU Make it big!

All The Best

For Your Exams

This question paper contains 4+1 printed pages

Roll No.										
S. No. of Question Paper	:	662	5							
Unique Paper Code	:	32351303 HC								
Name of the Paper	:	Multivariate Calculus								
Name of the Course	:	B.Sc. (Hons.) Mathematics								
Semester	:	ш								
Duration : 3 Hours						Ma	axin	num	Mark	s : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All sections are compulsory.

Attempt any five questions from each Section.

All questions carry equal marks.

Section I

1. Let f be the function defined by :

$$f(x, y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & \text{for } (x, y) \neq (0, 0) \\ 0 & \text{for } (x, y) = (0, 0) \end{cases}$$

Is f continuous at (0, 0) ? Explain.

2. Find the equation for each horizontal tangent plane to the surface :

$$z = 5 - x^2 - y^2 + 4y.$$

3. Let f and g be twice differentiable functions of one variable and let u(x, t) = f(x + ct) + g(x - ct) for a constant c. Show that :

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}.$$

- 4. Let f have continuous partial derivatives and suppose the maximal directional derivative of f at P₀(1, 2) has magnitude 50 and is attained in the direction from P₀ towards Q(3, -4). Use this information to find $\nabla f(1, 2)$.
- 5. Find the absolute extrema of $f(x, y) = x^2 + xy + y^2$ on the closed bounded set S where S is the disk $x^2 + y^2 \le 1$.
- 6. Find the point on the plane 2x + y + z = 1 that is nearest to the origin.

Section II

- 7. Find the area of the region D by setting double integral, where D is bounded by the parabola $y = x^2 - 2$ and the line y = x.
- 8. Write an equivalent integral with the order of integration reversed and then compute the integral :

$$\int_{0}^{4} \int_{0}^{4-x} xy \, dy dx.$$

 Calculate the Jacobian of transformation from rectangular to polar coordinates and hence evaluate the integral :

$$\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} \frac{1}{\sqrt{9-x^{2}-y^{2}}} dx dy.$$

- 10. Find the volume V of the solid bounded above by the cylinder $y^2 + z = 4$ and below by $x^2 + 3y^2 = z$.
- 11. Evaluate the integral below, where D is the region bounded above by the sphere $x^2 + y^2 + z^2 = 2$ and below by the paraboloid $z = x^2 + y^2$:

$$\iiint_{D} z \, dx \, dy \, dz.$$

12. Let D be the region in the xy-plane that is bounded by the co-ordinate axes and the line x + y = 1. Use the suitable change of variable to compute the integral :

$$\iint_{D} \left(\frac{x-y}{x+y}\right)^{6} dy \, dx.$$

Section III

- 13. State Green's theorem for simply connected regions. Use Green's theorem to find the work done by the force field $F(x, y) = (e^x y^3)i + (\cos y + x^3)j$ along the circle $x^2 + y^2 = 1$ in anticlockwise direction.
- 14. Give the geometrical interpretation of the surface integral $\iint ds$ over piecewise smooth surface S. Evaluate the surface integral $\iint xz \, ds$ over the surface S which is the part of the plane x + y + z = 1 that lies in the first octant.
- 15. Verify Stokes' theorem for the vector field $\mathbf{F}(x, y, z) = 2z\mathbf{i} + 3x\mathbf{j}$ + 5yk taking surface σ to be the portion of the paraboloid $z = 4 - x^2 - y^2$ for which $z \ge 0$ with upward orientation and C to be the positively oriented circle $x^2 + y^2 = 4$ that forms the boundary of σ in the xy-plane.

- 16. State and prove Divergence theorem.
- 17. Verify that the vector field $\mathbf{F}(x, y) = (e^x \sin y y)\mathbf{i} + (e^x \cos y x 2)\mathbf{j}$ is conservative using cross partial test. Use a line integral to find the area enclosed by the ellipse :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

18. Let E be the solid unit cube with opposing corners at the origin and (1, 1, 1) with faces parallel to co-ordinate planes. Let S be the boundary surface of E oriented with the outward pointing normal. If $\mathbf{F}(x, y, z) = 2xy\mathbf{i} + 3y\mathbf{e}^{-}\mathbf{j} + x \sin z \mathbf{k}$, find the integral $\iint \mathbf{F} \cdot \mathbf{n} \, ds$ over surface S using divergence theorem.

6625

Join Us For University Updates

learndu.in

Learn_DU

