Learn DU Make it big!

All The Best

For Your Exams

[This question paper contains 4 printed pages.]

P.T.O.

Your Roll No.....

Sr. No. of Question Paper	:	6624 HC
Unique Paper Code	:	32351302
Name of the Paper	:	Group Theory 1
Name of the Course	:	B.Sc. (Hons.) Mathematics
Semester	:	III
Duration : 3 Hours		Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immec this question paper.
- 2. Attempt any two parts from each ques
- 3. All questions are compulsory.
- 1. (a) For a fixed point (a, b) in R², define T_(a,b): R² → R² by (x, y) → (x + a, y + b).
 Show that T(R²) = {T_{a,b} | a, b ∈ R} is a group under function composition. (6)

(b) (i) Find the inverse of
$$\begin{pmatrix} 2 & 6 \\ 3 & 5 \end{pmatrix}$$
 in GL(2, \mathbb{Z}_{11}). (4)

- (c) (i) Let G be a group. Show that $Z(G) = \bigcap_{a \in G} C(a)$ where Z(G) is the Center of G and C(a) is the Centralizer of a. (4)
 - (ii) Let G be the group of nonzero real numbers under multiplication. Show that

$$H = \{x \in G | x = 1 \text{ or } x \text{ is irrational}\}$$

and
$$K = \{x \in G | x \ge 1\} \text{ are not subgroups of } G.$$
(2)

2. (a) Let G be a group and let a ∈ G. If |a| = n, prove that (a) = {e, a, a²,..., aⁿ⁻¹} and aⁱ = a^j if and only if n divides i - j.

- (b) Suppose that |a| = 24. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. (c) If |a| = n
- (c) If |a| = n, show that

$$\langle \mathbf{a}^{\mathbf{k}} \rangle = \langle \mathbf{a}^{\text{gcd}(\mathbf{n},\mathbf{k})} \rangle$$
 $|\mathbf{a}^{\mathbf{k}}| = \frac{\mathbf{n}}{\gcd(\mathbf{n},\mathbf{k})}$
(6)

and that

learndu.in

3. (a) Define the Alternating Group A_n . Show that it forms a subgroup of the Permutation Group S_n and $|A_n| = \frac{n!}{2}$. (6)

(b) Prove that every group is isomorphic to a group of permutations.(6)

- (c) Prove that U(10) is not isomorphic to U(12). (6)
- 4. (a) State and prove Orbit Stabilizer Theorem. $(6\frac{1}{2})$
 - (b) (i) Prove that aH = H if and only if $a \in H$. (3)
 - (ii) Prove that aH = bH or $aH \cap bH = \phi$. (3¹/₂)
 - (c) (i) Prove that order of U(n) is even when n > 2. (3)

(ii) Prove that a group of prime order is cyclic. (3¹/₂)

5. (a) Let H and K be subgroups of a finite group G and let

$$HK = \{hk | h \in H, k \in K\}$$

and $KH = \{kh | k \in K, h \in H\}.$

Prove that HK is a group if and only if HK = KH. (6¹/₂)

- (b) Let φ be a homomorphism from a group G to a group
 - \overline{G} and let g be an element of G. Prove that

(i) If
$$\varphi(g) = g'$$
, then $\varphi^{-1}(g') = \{x \in G | \varphi(x) = g'\} = g Ker \varphi$
(4)

- (ii) If $|\text{Ker}\phi| = n$, then ϕ is an n to 1 mapping from G onto $\phi(G)$. $(2\frac{1}{2})$
- (c) (i) Prove that A_n is normal in S_n . (3¹/₂)
 - (ii) If G is a non-Abelian group of order p³ (p is prime) and Z(G) ≠ {e}, prove that |Z(G)| = p. (3)

6. (a) State and prove The First Isomorphism Theorem. (6¹/₂)

(b) Let G be a group and let Z(G) be the center of G. Prove that if $\frac{G}{Z(G)}$ is cyclic, then G is Abelian. (6¹/₂)

(c) Let
$$4Z = (0, \pm 4, \pm 8, \cdots)$$
. Find Z/4Z. (6¹/₂)

Join Us For University Updates

Learn_DU

