Learn DU Make it big!

All The Best

For Your Exams

This question paper contains & printed pages.

Your Roll No.

H

Sl. No. of Ques. Pap	er: 5711
Unique Paper Code	: 235304
Name of Paper	: Algebre – II (MAHT-303)
Name of Course	: B.Sc. (Hons.) Mathematics
Semester	: III
Duration	: 3 hours
Maximum Marks	: 75

(Write your Roll No. on the top immedi on receipt of this question paper.)

Do any two parts from each questions.

Questions

- 1. (a) Let $G = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} : a \in \mathbb{R}, a \neq 0 \right\}$. Show that G is a group under matrix multiplication. (6)
 - (b) (i) Prove that if G is a group with the property that square of every element is identity then G is abelian.
 - (ii) Define center of a group G. Show that center of a group G is an abelian subgroup of G. (2+4)
 - (c) Define order of an element. Consider the element $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. What is the order of

A in (i) $SL(2, \mathbb{R})$ (ii) $SL(2, \mathbb{Z}_p)$, p is a prime. (6)

- 2. (a) Let $G = \langle a \rangle$ be a cyclic group of order n. Prove that $G = \langle a^k \rangle$ if and only if gcd(n, k) = 1. Find all the generators of Z_{20} . (6.5)
 - (b) Suppose that a and b are group elements that commute have orders m and n respectively. If <a> ∩ = {e}. Prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.

(c) Let 'o' be a fixed element of a group G. Define centralizer of the element a. Show that $Z(G) = \bigcap_{a \in G} C_1(a)$. (6.5)		
3. (a) (i) Prove that product of two odd permutation is an even permutation	ion.	
(ii) Show that $Z(S_n) = \{\epsilon\}$ for $n \ge 3$.	(2.+4)	
(b) Show that if H is a subgroup of S _n then every member of H is an evor or exactly half of them are even.	A:n permutation (6)	
(c) (i) Let H and K be subgroups of a group G. If $ H = 12$ and $ K = 35$, find $ H \cap K $.		
(ii) Find all left cosets of {1, 11} in U(30).	(2 + 4)	
4. (a) State and prove Lagrange's theorem for finite groups.	(6.5)	
(b) (i) Prove that every subgroup of D_n of odd order is cyclic.		
(ii) Prove or disprove Z x Z is a cyclic group.	(3.5 + 3)	
(c) Define index of a subgroup in a group. Show that Q, the group of rational numbers under addition has no proper subgroup of finite index. (6.5)		
 (a) Let G be a group and H a normal subgroup of G. The set G/H = (a) group under the operation (aH) (bH) = abH. 	H∣a∈G} is a (6)	
(b) Let N be a normal subgroup of a finite group G. If N is cyclic, prove subgroup of N is normal in G.	that every (6)	
(c) Determine all the homomorphisms from Z_{12} to Z_{30} .	(6)	
 6. (a) Suppose that φ is an isomorphism from a group G onto a group G cyclic if and only if G* is cyclic. Hence show that Z, the group addition is not isomorphic to Q, the group of rationals under addition 	of integers under	
(b) State and prove Cayley's theorem.	(6.5)	
(c) Let M and N be normal subgroups of a group G and N ⊆ M. Prov (G/N)/(M/N) ≅ G/M.	re that (6.5)	

 $(G/N)/(M/N) \cong G/M.$

Join Us For University Updates

learndu.in

Learn_DU

