Lecin DU Make It Big!

 $\mathbf{O}\mathbf{O}$

All The Best

For Your Exams

This question paper contains 4 printed pages

This question paper contain	learndu.in
Roll No.	
S. No. of Question Paper :	89
Unique Paper Code :	32351102 I
Name of the Paper :	Algebra
Name of the Course :	B.Sc. (Hons.) Mathematics
Semester :	1
Duration : 3 Hours	Maximum Marks : 75
(Write your Roll No. on the top	immediately on receipt of this question paper.)
Attempt any two parts from each question.	
All questions are compulsory.	
1. (a) Find polar rep	presentation of the complex number : 6
$z = \sin z$	$a + i(1 + \cos a), a \in [0, 2\pi).$
(b) Find $ z $ and	arg z, arg $(-z)$ for : 6
(<i>i</i>) $z = (1 - 1)^{-1}$	-i) (6 + 6i)
(<i>ii</i>) $z = (7 - 1)^{-1}$	$7\sqrt{3}i)(-1-i)$.
(c) Solve the equ	uation : 6
$z^4 = 1$	$5(z-1)(z^2-z+1).$

For $a, b \in \mathbb{Z}$, define $a \sim b$ iff $a^2 - b^2$ is divisible (a) 6 by 3 :

(i) Prove that \sim is an equivalence relation on Z.

Find the equivalence classes of 0 and 1. (*ii*)

Define : (b)

2

 $f: \mathbb{Z} \to \mathbb{Z}$ by $f(x) = x^2 - 5x + 5$

9

Is f one-to-one? (i)

(ii) Is f onto ?

Justify each answer.

6

(c) Show that the open intervals (0, 1) and (4, 6) have

(2)

learndu.in

6

Sheet and the second

(M) 81-21-81

3. (a) Suppose a, b and c are three non-zero integers with a and c relatively prime. Show that : 6

the same cardinality.

gcd(a, bc) = gcd(a, b).

(b) (i) Solve the following congruence if possible. If no solution exists, explain why not :

$$4x \equiv 2 \pmod{6}.$$

(*ii*) Find three positive and three negative integers in $\overline{5}$ w.r.t. congruence mod 7. 6

Use mathematical induction to establish the following inequality :

 $n ! > n^3$, for all $n \ge 6$.

4. (a) Find the general solution to the following linear system : 6¹/₂

$$3x_{2} - 6x_{3} + 6x_{4} + 4x_{5} = -5$$

$$3x_{1} - 7x_{2} + 8x_{3} - 5x_{4} + 8x_{5} = 9$$

$$3x_{1} - 9x_{2} + 12x_{3} - 9x_{4} + 6x_{5} = 15.$$
(b) Let $u = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$ and $A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$.

9

Is u in the subspace of \mathbb{R}^3 spanned by the columns of A. Why or why not ? $6^{\frac{1}{2}}$

(3)

(c) Let :

5.

$$v_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, v_3 = \begin{bmatrix} 5 \\ -7 \\ h \end{bmatrix}.$$

(i) For what values of h is v₃ in span {v₁, v₂} ?
(ii) For what values of h is {v₁, v₂, v₃} linearly dependent ? Justify each answer. 6¹/₂

(a) Let
$$A = \begin{bmatrix} 2 & 5 & 1 \\ 3 & 6 & 0 \end{bmatrix}$$
, and define by $T : \mathbb{R}^3 \to \mathbb{R}^3$ by

[1 4 2]

 $T(x) = Ax. \text{ Find all } x \text{ in } \mathbb{R}^3 \text{ such that } T(x) = 0. \text{ Does}$ $b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \text{ belong to range of T } ? \qquad 6^{1/2}$

(b) A linear transformation T : R² → R² first reflects points through the x₁-axis and then reflects points through the x₂-axis. Show that T can also be described as a linear transformation that rotates points about the origin. What is the angle of that rotation ? 6¹/₂
 (c) Let

$$A = \begin{bmatrix} 2 & -3 & -4 \\ -8 & 8 & 6 \\ 6 & -7 & -7 \end{bmatrix}, \text{ and } u = \begin{bmatrix} 6 \\ -10 \\ 11 \end{bmatrix}.$$

Is u in Nul A ? Is u in Col A ? Justify each answer. $6\frac{1}{2}$

P.T.O.

(4)

6. (a) Given
$$b_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$ and $B = \{b_1, b_2\}$ is basis
of subspace H of R^2 .

(i) Determine if
$$x = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$$
 belongs to H.

(ii) Find [x]_B, the B-coordinate vector of x. 6¹/₂
(b) Determine the basis of the null space of the following matrix :

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -5 & 0 & -1 \\ 2 & 5 & -8 & 4 & 3 \\ -3 & -9 & 9 & -7 & -2 \\ 3 & 10 & -7 & 11 & 7 \end{bmatrix}.$$
 6¹/₂

(c) Is $\lambda = -2$ an eigenvalue of $\begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$.

4

9

89

If so, find one corresponding eigenvector.

61/2

Join Us For University Updates

Learn_DU

in Learn DU

