LEGITN DU MAKE IT BIG!

 \mathbf{OO}

All The Best

For Your Exams

[This question paper contains 8 prin

You

Sr. No. of Question Paper :	3037 D
Unique Paper Code :	2272101102
Name of the Paper :	Introductory Mathematical Methods for Economics
Name of the Course :	B.A. (Hons.) Economics – DSC-2
Semester :	· I
Duration : 3 Hours	Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All questions are compulsory.
- 3. Use of simple calculator is allowed.
- 4. All parts of a question must be answered together.
- 5. PwD marked questions are alternatives to be attempted only by PwD students.

- 1. Answer any two of the following :
 - (a) (i) Find all values of x satisfying (|x|-2)(x+5) < 0.
 - (ii) If A and B are two sets containing 4 and 7 elements respectively, find the maximum and minimum number of elements in $A \cup B$.
 - (b) Fill in the blank with necessary, sufficient or necessary and sufficient:
 - (i) If A is a sufficient condition for B, then ~B is _____ condition for ~A.
 - (ii) For a rectangle to be considered a square, having four sides of equal length is ______ condition.

(iii)
$$x > 0$$
 is _____ for $x(x + 4) > 0$.

- (iv) For two sets X and Y, $X \cup Y = X$ is <u>condition</u> for Y to be a subset of X.
- (c) Graph $f(x) = |x^2 x 6|$.
- PwD(c) Suppose the consumers of a product demand 60 units of a product when the price is ₹ 5 per unit and 40 units when the price per unit has gone up by ₹ 4.
 - (i) Find the demand equation for the product, assuming that it is linear.

2. A

57

learndu.in

2.

3

 $2 \times 4 = 8$) 5) < 0. and 7 m and B.

ent or

then

uare, h is

X is t of

60 init up

ct,

 (ii) Express total revenue and find the price for which total revenue is maximum.

Answer any four of the following: $(4 \times 4 = 16)$

- (a) The value of a new car depreciates (decreases) after it is purchased, according to an exponential decay model. Suppose that the value of the car is ₹ 12000 at the end of 5 years and that its value has been decreasing at the rate of 9% per year. Find the value of the car when it was new. Find t when the value of the car reduces to half of its value when it was new.
- (b) A country exports three goods, wheat W, coal C and palm oil 0. At time $t = t_0$, the revenue in crores of rupees derived from each of these goods is $W(t_0) = 4$, $C(t_0) = 10$ and $0(t_0) = 7$. W is declining at 3% while 0 and C are growing at 15% and 8% respectively. Find the rate of growth of total export earnings at $t = t_0$.
- (c) Examine the inverse demand curve $p = \frac{20}{x+1}$.

Show that the demand increases from 0 to indefinitely large amounts as price falls. Find total revenue and show that it increases to a limiting value.

- (d) Consider an infinite series $\sum_{i=1}^{a_i} a_i$. From that $\lim_{n \to \infty} a_n = 0$ is necessary for convergence for the series, but not sufficient.
- (e) If $f(x) = \frac{x^n}{e^x}$, show that f(x) decreases for $x \ge n > 0$ and find the local maximum value of f(x). Find f(2x) and show that $\frac{2^n x^n}{e^x e^x} \le \frac{2^n n^n}{e^n e^x}$.

3. Answer any three of the following: $(4 \times 3 = 12)$

- (a) Using Mean Value theorem, prove the inequality,
 e^x ≥ 1 + x for all x ∈ R.
- (b) (i) The time in minutes, t, required for a rat to run through a maze depends on the number of trials, n, that the rat has practiced.

$$t(n) = \frac{3n+15}{n+1}, n \ge 1$$

How does the change in n impact the change in t? Does there appear to be a limiting time in which the rat can complete the maze? How many trials are required so that the rat is able to finish the maze in under 5 minutes?

 (ii) National income in two economies X and Y is growing exponentially at 100r_x% and (c) Us

ap

ap the

(d) An Th su Sh

ra

4. Answ

(a) If w

n

(b) S1

th in an as

4

\$037

. Prove that gence for the

s for $x \ge n > 0$ of f(x). Find

 $(4 \times 3 = 12)$

e inequality,

l for a rat to the number cticed.

the change miting time maze? How the rat is 5 minutes?

s X and Y 0r_x% and 100 r_y % respectively (composition continuously), where $r_x > r_y$. In year zero, national income was N_x^0 in economy X and N_y^0 in economy Y. If $N_x^0 < N_y^0$, at what time will the national income become equal in both the economies?

- (c) Use Newton's binomial formula to find the approximate value of $\sqrt{217}$, taking the degree of approximation as 2. Also find the upper bound on the absolute error.
- (d) An investment project incurs an initial loss of C_0 . Thereafter it does not incur any losses and the sum of later profits is greater than the initial loss. Show that the project has a unique positive internal rate of return.

4. Answer any three of the following: $(4 \times 3 = 12)$

- (a) If f is a continuous function on the interval [0,1] with f(0) > 0 and f(1) < 1, then there is some number c ∈ (0,1) which satisfies f(c) = c.
- (b) Suppose that the value of wine W(t) is given as the following function of time: W(t) = 1000. $e^{\sqrt{\frac{t}{4}}}$ in crores of rupees (t = 0 denotes the present). At an interest rate 10% compounded continuously and assuming zero storage costs, what is the optimal

time to sell the wine? Interpret condition.

- (c) Let $f(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$, does the function f have an inverse function g? If yes, find the inverse and $g'\left(\frac{1}{2} \ln 3 \right)$.
- (d) Given f and g are not differentiable functions, show g(x) = f(ax + b) (where a and b are real numbers) is convex if f is convex.

5. Answer any three of the following: $(3 \times 5 = 15)$

(a) The graph of the equation $x^2y - 3y^3 = 2x$ passes through the point (x, y) = (-1, 1). Find the slope of the graph at this point. Find the points where function is not differentiable. Does the curve have horizontal tangent?

(b) (i) Find the limit:
$$\lim_{x \to \infty} \left(\frac{2 + 3x^m}{1 - x^n} \right) m, n \in \mathbb{N}$$
. (2)

(ii) Let
$$f(x) = \frac{\log\left(1+\frac{x}{p}\right) - \log\left(1-\frac{x}{q}\right)}{x}$$
, where p

and q are positive constants. Can you define f(x) at x = 0 so as to make the function continuous at x = 0? (3)

(d) Q^d dif the

2)

ex

Fir

Answe

6.

(a) The

wit who order

f have rse and

re real

×5=15)

passes lope of where ve have

(2)

here p

6.

unction (3)

(c) (i) Consider two cash flows,

flow A, you receive ₹ 16 every year for 5 years with the first payment being a year from now. For cash flow B, you receive ₹ x every year forever with the first payment being today. What is the value of x so that cash flow B has the same present value as cash flow A, given that the rate of interest is 6% per annum (compounded annually)?

(ii) If f(x) and g(x) are differentiable functions of x, express the elasticity of h(x) = e^{f(x)g(x)} w.r.t x in terms of E_xf and E_xg which are the elasticities of f(x) and g(x) w.r.t x respectively.

(d) $Q^d = f(P + t)$ and $Q^s = g(P)$ where f and g are differentiable functions with f' < 0 and g' > 0. Use the equilibrium condition $Q^d = Q^s$ to find an expression for $\frac{dP}{dt}$. Also comment on its sign. Find the expression for $\frac{d(P+t)}{dt}$ and find its range.

Answer any two of the following: $(6 \times 2=12)$ (a) The monopolist with the cost function $C(x) = \frac{1}{2}x^2$, with quantity x, faces a demand curve x = 12 - p, where p is the price.

learndu.in

- (i) Find equilibrium price
- (ii) What would be the quantity if the monop the price as given as under perfect competition? Compare the profits under
 monopoly and perfect competition.
- (iii) To ensure that the monopolist acts like a perfectly competitive firm, a specific tax of t per unit is imposed on him. Find the equilibrium output, t and show that it is actually negative. What does it imply?
- (b) (i) Let the function $f(x) = (6-x^2)\sqrt{x^2-4}$ be defined over [-6, -2], Find the extreme points of f.
 - (ii) Determine the concavity/convexity of the following function $f(x) = (e^{2x} + 4e^{-x})^2$.

(c) Let $f(x) = x - 2 \ln(x + 1)$

- (i) Determine where f(x) is increasing/ decreasing.
- (ii) Find possible extreme points and inflexion points. Does the function have global maximum/minimum point(s)?
- (iii) Sketch the graph of f(x).
- PwD (iv) Determine the intervals of concavity/convexity of the function $g(x) = x^4 - 12x^2$.

(3500)

Join Us For University Updates

Learn_DU

in Learn DU

